

DC Oil Transfer Pump User's Manual

Model No. DITI17520100

Read carefully and understand all INSTRUCTIONS before operating. Failure to follow the safety rules and other basic safety precautions may result in serious personal injury. Save these instructions in a safe place and on hand so that they can be read when required.

A. MACHINE DESCRIPTION

Pump: Electric self-priming rotary external gear pump, equipped with a by pass valve **MOTOR**: Brush motor powered by continuous current, low voltage, with intermittent cycle, closed type, IP55 protection class according to CEI EN 60034-5.

Description	Europe		America	
	17520100	17520101	17520102	17520103
Voltage	12V	24V	12V	24V
Power	150W	150W	150W	150W
Current	40A	30A	40A	30A
Flow Rate	10LPM	10LPM	10Quarts/min.	10Quarts/min.
Pressure	4 bar	4 bar	60 PSI	60 PSI
Inlet/Outlet	3/4" BSP	3/4" BSP	3/4" NPT	3/4" NPT
Rated Speed	2900 RPM	2900 RPM	2900 RPM	2900 RPM

B. TECHNICAL INFORMATION

C. OPERATING CONDITIONS

D.1 ENVIRONMENTAL CONDITIONS

Temperature: min-10°C/max+60°C Relative humidity: max. 90%

The temperature limits indicated are applied to the pump components and must be respected to avoid possible damage or malfunction.

It is understood, nevertheless, that for a given oil, the real functioning temperature range also depends on the variability of the viscosity of the oil itself with the temperature. Specifically:

- The minimum temperature allowed -10°C) could cause the viscosity of some oils to greatly exceed the maximum allowed, with the consequence that the static torque required during the starting of the pump would be excessive, risking overload and damage to the pump.
- The maximum temperature allowed (+60 ℃) could, on the other hand, cause the viscosity of some oils to drop well below the minimum allowed, causing a degradation in performance with obvious reductions in flow rate as the back pressure increases.

C.2 ELECTRICAL POWER SUPPLY

Depending on the model, the pump must be supplied by a continuous current line whose nominal values are shown in the table in Paragraph C-TECHNICAL INFORMATION.

The maximum acceptable variations from the electrical parameters are:

Voltage: +/-5% of the nominal value

Power from lines with values outside of the indicated limits can damage the electrical components.

C.3 WORKING CYCLE

The pumps are designed for INTERMITTENT use with a 30-minute work cycle under conditions of maximum back pressure

Functioning under by-pass conditions I only allowed for brief periods of time(2-3minutes maximum).after a work cycle of 30 minutes, wait for the motor to cool.

C.4 FLUID ALLOWED/FLUID NOT ALLOWED

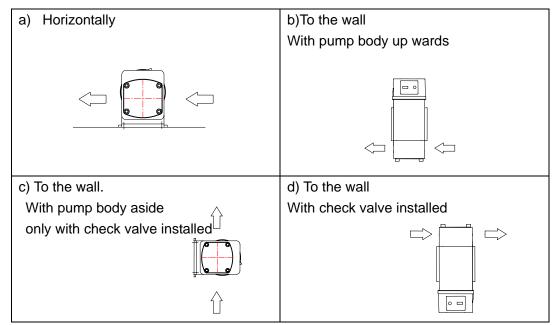
ALLOWED: Oil with a Viscosity from 50 to 600cst (at working temperature)

NOT ALLOWED	RELATED DANGER
Gasoline (Petrol)	Fire - explosion
Inflammable liquids with PM < 55° C	Fire - explosion
Water	Oxidation of the pump
Liquid food products	Contamination of same
Corrosive Chemicals	Corrosion of the pump
	Injury to people
Solvents	Fire – explosion
	Damage to gasket seals

D. MOVING AND TRANSPORTING

Given the limited weight and size of the pumps (See dimensions and weights), moving the pumps does not require the use of lifting equipment.

The pumps are carefully packed before shipment. On receipt, check the packing materials and store in a dry place.


E. INSTALLATION

E1 Preliminary Inspection

- Check that the machine has not suffered any damage during its transport or warehousing.
- Clean the inlet and outlet openings with care, removing any dust or packing residue.
- Make sure that the motor shaft turns freely.
- Check that the electrical information corresponds with what is shown on the label.

E.2 MECHANICAL INSTALLATION

The pumps can be installed as follows:

It is recommended to install a check value in order to resume the system operation quickly and easily even after the first priming

Under conditions C and D, a check valve is to be installed. Moreover, during the initial start-up phase, the suction tube is to be filled with oil.

Fix the pump using screws of a diameter suitable for the provided fixing holes as indicated in the drawing "Dimensions and weights".

THE MOTORS ARE NOT OF AN ANTI-EXPLOSIVE TYPE

Do not install them where inflammable vapours could be present.

It is the installer's responsibility to provide the line accessories necessary for the safe and proper functioning of the pump.

The use of accessories that are inappropriate for use with oil can cause damage to the pump or people as well as pollution

F. INITIAL START-UP

The pumps are self-priming and, therefore, able to draw oil from the tank even when the suction hose is empty on start-up.

The priming height (distance between the surface of the oil and the inlet opening) must not exceed 2.5 meters

Wetting the pump. Before starting the pump, wet the inside of the pump body with oil through the inlet and outlet openings.

If the pump is already installed, the operation can be performed by removing the cover of the chamber filling the internal chamber with oil and placing the cover again, paying attention to the O-ring seal.

In the priming phase the pump must blow the air that was initially present in the tubing into the line, therefore, it is necessary to keep the delivery open.

When the tube is filled with oil, the purging phase is concluded.

If a foot valve was not installed, install the pump in a position so that oil is always present in the gear chamber.

If the foot-valve seal is not perfectly tight, the suction tube may be emptied and the operation of initial start-up described above must be repeated.

The priming phase may last from several seconds to a few minutes, depending on the characteristics of the system.

If this phase is excessively prolonged, stop the pump and verify:

- That the pump is not running completely "dry"
- That the suction hose guarantees against air infiltration and is correctly immersed in the fluid to be drawn
- That the filter in the suction circuit, if any, is nit blocked
- That the delivery hose allows for the easy evacuation of the air
- That the priming height is not greater than 2.5 meters
- The exact rotation direction of the motor: it must be in a counter-clockwise considering the motor from pos. 1 of the exploded diagram.

When priming has occurred, after reattaching the delivery nozzle, verify that the pump is functioning within the expected ranges, possibly checking:

that under conditions of maximum flow the energy drawn by the motor falls within the values indicated on the label

G. DAILY USE

NO particular preliminary operation is required for every day use of these pumps.

- Before starting the pump, make sure that the ultimate shut-off device (delivery nozzle or line valve) is closed. If the delivery has no shut-off device (free delivery), make sure that it is correctly positioned and appropriately attached to the delivery tank.
- Make sure that the tank is filled with a quantity of oil greater than the quantity to be supplied (running dry could damage the pump)
- Turn the on-switch present on some pump models or the start/stop switch installed on the electrical power line
- Open the delivery valve or activate the delivery nozzle, gripping it securely

Fluid exits at high pressure from a delivery nozzle fed by the pump.

Never point the outlet of the nozzle towards any part of the body.

Close the delivery nozzle or the line valve to stop delivery .the pump will automatically enter by-pass mode.

Functioning with the delivery closed is only allowed for brief periods (2 to 3minutes maximum). functioning under nominal conditions in limited to a work cycle of 30 minutes. If this time is exceeded, you have to run off the pump and wait for it to cool after use, make sure the pump us turned off.

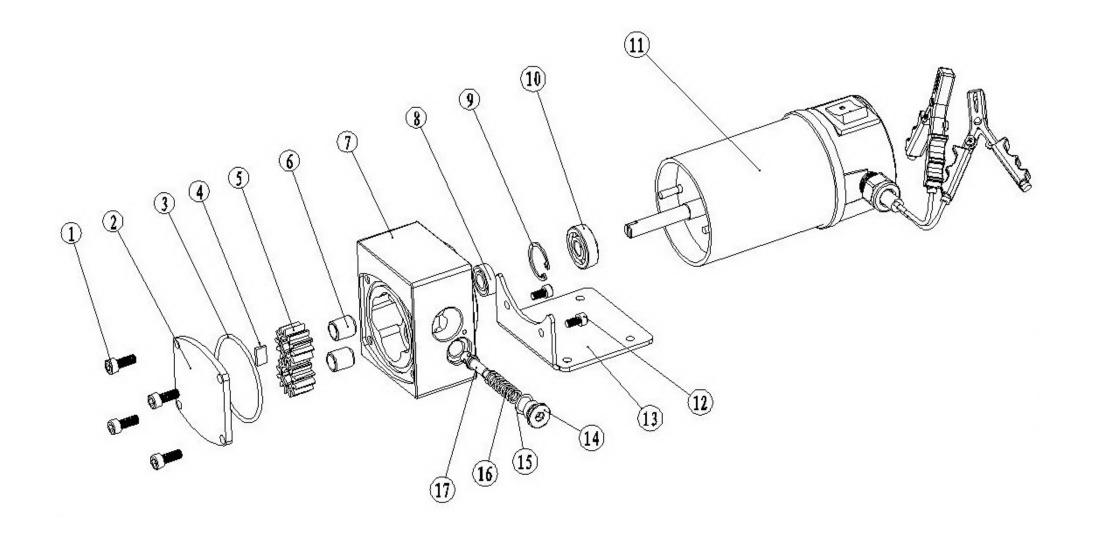
Stop the pump.

H. PROBLEMS AND SOLUTIONS

PROBLEM	POSSIBLE CAUSE	CORRECTIVE ACTION	
Motor does not turn	Lack of electric power	Check electrical connections	
		and the safety systems	
	Rotor jammed	Check for possible damage or	
		obstruction of the rotating	
		components	
	Motor problems	Contact the service department	
	Fuse burnt out	Replace the fuse	
Motor turns slowly	Low voltage from the electrical	Adjust the voltage within	
when starting	power supply	anticipated limits	
	Excessive oil viscosity	Verify oil temperature and	
		warm it to reduce excessive	
		viscosity	
LITTLE OR NO	Low level in the suction tank	Fill in the tank	
FLOW	Foot valve blocked	Clean and/or replace valve	
	Filter blocked	Clean the filter	
	Excessive suction pressure	Lower the pump with respect to	
		the level of the tank or increase	
		the cross-section of the hose	
	High load loss in the delivery circuit	Use shorter hose or of wider	
	(running with by-pass open)	diameter	
	By-pass valve blocked	Detach the valve, clean or	
		replace it	
	Air in the pump or suction hose	Check the seal of the	
		connection	
	Narrowing of the suction hose	Use a hose appropriate for	
		working under suction pressure	
	Low rotation speed	Check the voltage at the pump.	
		Adjust the voltage or use	
		cables of greater cross-section	
	Excessive oil viscosity	Verify the oil temperature and	
		warm it to reduce the	
		excessive viscosity	

HIGHER PUMP	Cavitations	Reduce the suction pressure	
NOISE	Irregular by-pass functioning	Deliver until the air in the	
		by-pass system is purged	
	Presence of the air in the oil	Wait for the oil in the tank to	
		settle	
LEAKAGE FROM	Damage to the mechanical seal	Check and replace the	
THE PUMP BODY		mechanical seal	
HIGH	The cover is screwed too tightly	Loosen the screws of the	
ABSORPTION		cover	
	Excessive oil viscosity	Verify the oil temperature and	
		warm it to reduce the	
		excessive viscosity	

I. MAINTENANCE


- On a weekly basis check that the hose joints have not loosened, to avoid any leakage
- On a monthly basis check the pump body and clean it removing any impurities.
- On a monthly basis check and clean the filters placed at the pump inlet.
- On a monthly basis check that the electric power cables are in good condition.

J. NOISE LEVEL

Under Normal operating conditions noise emission for all models does not exceed the value of 70 db "A" at a distance of 1 Meter from the electric pump.

K. EXPLODED DIAGRAMS AND SPARE PARTS

0.	Description	Qty
1	SCREW M6x10	4
2	Gear coverplate	1
3	O-RING 58.42x2.62	1
4	Driver key	1
5	Gear	2
6	Axile bush	2
7	Pump body	1
8	Oil seal	1
9	elastic collar	1
10	ball bearing	1
11	Motor	1
12	SCREW M5X10	2
13	bracket	1
14	Valve plug	2
15	O-RING 11.1*1.78	2
16	compression helical spring	1
17	by-pass valve	1

